
Sourcecode: Example2.c

Sourcecode: Example2.c ii

COLLABORATORS

TITLE :

Sourcecode: Example2.c

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Sourcecode: Example2.c iii

Contents

1 Sourcecode: Example2.c 1

1.1 Example2.c . 1

Sourcecode: Example2.c 1 / 6

Chapter 1

Sourcecode: Example2.c

1.1 Example2.c

/***/
/* */
/* Amiga C Encyclopedia (ACE) Amiga C Club (ACC) */
/* -------------------------- ------------------ */
/* */
/* Manual: AmigaDOS Amiga C Club */
/* Chapter: Parsing Command Line Tulevagen 22 */
/* File: Example2.c 181 41 LIDINGO */
/* Author: Anders Bjerin SWEDEN */
/* Date: 93-03-06 */
/* Version: 1.0 */
/* */
/* Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/* */
/* Registered members may use this program freely in their */
/* own commercial/noncommercial programs/articles. */
/* */
/***/

/* This example demonstrates how to parse the command line */
/* with several arguments. This example handles two types of */
/* command templates. First it can collect one or more */
/* words which will be used as file names. This demonstrates */
/* the "/M" (Multiple argument) option. Secondly the example */
/* accepts a special argument used as a switch. This */
/* demonstrates the "/S" ("Switch") option. The special */
/* argument is "Filter", but can also be abbreviated as "F". */

/* Include the dos library definitions: */
#include <dos/dos.h>

/* Include information about the argument parsing routine: */
#include <dos/rdargs.h>

/* Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */

Sourcecode: Example2.c 2 / 6

#include <clib/exec_protos.h> /* System functions... */
#include <stdio.h> /* Std functions [printf()...] */
#include <stdlib.h> /* Std functions [exit()...] */

/* Here is our command line template. This program handles two */
/* types of command templates: */
/* */
/* 1. "SoundFiles/A/M" The program accepts one or more arguments */
/* which will be used as file names. The "/A" */
/* option tells the ReadArgs() function that */
/* at least one file name must be given. The */
/* "/M" option tells the ReadArgs() function */
/* that this template should accept several */
/* arguments if necessary. (All arguments */
/* which can not be placed anywhere else will */
/* go here. Please note that only one "/M" */
/* option can be used in the command line */
/* template.) */
/* */
/* 2. "F=Filter/S" The user has an option of adding the */
/* argument "Filter". The "/S" option tells */
/* the ReadArgs() function that this argument */
/* should be treated as a switch. If the */
/* argument is set the switch will be turned */
/* "on", else it will be "off". The "F=" */
/* string means that the user also can use the */
/* abbreviation "F" in stead of writing the */
/* whole argument "Filter". */
/* */
/* (Note the comma [,] between the command templates and that */
/* there are no spaces [].) */
#define MY_COMMAND_LINE_TEMPLATE "SoundFiles/A/M,F=Filter/S"

/* Here are some valid command lines: */
/* Example2 Bird.snd */
/* Example2 Bird.snd River.snd */
/* Example2 Bird.snd River.snd Sea.snd */
/* Example2 Bird.snd Filter */
/* Example2 Bird.snd River.snd F */
/* Example2 Bird.snd Filter River.snd Sea.snd */
/* */
/* Here are some incorrect command lines: */
/* Example2 One file name is required! */
/* Example2 Filter - " - */

/* Two command templates are used: */
#define NUMBER_COMMAND_TEMPLATES 2

/* The command template numbers: (Where the result of each */
/* command template can be found in the "arg_array".) */
#define SOUNDFILES_TEMPLATE 0
#define FILTER_TEMPLATE 1

Sourcecode: Example2.c 3 / 6

/* Set name and version number: */
UBYTE *version = "$VER: AmigaDOS/ParsingCommandLine/Example2 1.0";

/* Declare an external global library pointer to the Dos library: */
extern struct DosLibrary *DOSBase;

/* Declared our own function(s): */

/* Our main function: */
int main(int argc, char *argv[]);

/* Main function: */

int main(int argc, char *argv[])
{

/* Simple loop variable: */
int loop;

/* Store the pointer to the array of string pointers here: */
UBYTE **string_array;

/* Pointer to a RDArgs structure which will automatically */
/* be created for us when we use the RDArgs() function: */
struct RDArgs *my_rdargs;

/* The ReadArgs() function needs an arrya of LONGs where */
/* the result of the command parsing will be placed. One */
/* LONG variable is needed for every command template. */
LONG arg_array[NUMBER_COMMAND_TEMPLATES];

/* Note! This "arg_array" must be cleared (all values set to */
/* zero) before we may use it with the ReadArgs() function. */
/* If we declare this structure outside the main function */
/* all values will automatically be cleared by C, but if we, */
/* as in this example, declare the array inside a function */
/* we have to clear it manually. (If we do not clear it we */
/* can not examine the array and see if a field is set or */
/* not.) */

/* The built in command parsing routine was first */
/* introduced in Release 2. V36 of the dos library */
/* was however rather "buggy", and you should only */
/* use V37 or higher: */
if(DOSBase->dl_lib.lib_Version < 37)
{

/* Too old dos library! */
printf("This program needs Dos Library V37 or higher!\n");

Sourcecode: Example2.c 4 / 6

/* Exit with an error code: */
exit(20);

}

/* We will now clear the "arg_array" (set all values to zero): */
for(loop = 0; loop < NUMBER_COMMAND_TEMPLATES; loop++)

arg_array[loop] = 0;

/* Parse the command line: (ReadArgs() will read the command */
/* line and with the help of the command line template set */
/* the corresponding values in the "arg_array" which is used */
/* to store the result of the command parsing. The function */
/* will return a pointer to a RDArgs structure which has */
/* automatically been created for us, since we did not create */
/* one ourself. This structure must be removed with help of */
/* the FreeArgs() function before your program may terminate.) */
my_rdargs =

ReadArgs(MY_COMMAND_LINE_TEMPLATE,
arg_array,
NULL

);

/* Have AmigaDOS successfully parsed our command line? */
if(!my_rdargs)
{

/* The command line could not be parsed! The user probably */
/* forgot to enter an argument which is required. */
printf("Could not parse the command line!\n");

/* Life isn’t fair... */
exit(21);

}

/* The comand line has successfully been parsed! */
/* We can now examine the "arg_array": */

/* Print template 1, the file name argument. Since the user may */
/* enter several file names (the "/M" option is set) the value */
/* in the "arg_array" will not be a pointer to a string. */
/* Instead, the value in the "arg_array" will be a pointer to */
/* another array of strings where the file names are stored. */
/* Please note that this will only happen if you have set the */
/* "/M" option. */

/* Are there any file names (there must be at least one */
/* in this example, the "/A" option is se, but we better */
/* check it anyway...) */
if(arg_array[SOUNDFILES_TEMPLATE])
{

/* Store the pointer to the array of stirng pointers: */

Sourcecode: Example2.c 5 / 6

/* (I agree that double pointers look horrible...) */
string_array = (UBYTE **) arg_array[SOUNDFILES_TEMPLATE];

/* What we have to do now is to examine all strings with help of */
/* a simple while loop. The last string in the array will be set */
/* to NULL so we know were the list ends. */

/* Start with the first string: */
loop = 0;

/* Print all file names: */
while(string_array[loop])
{

/* Print the file name: */
printf("File name: %s\n", string_array[loop]);

/* Increase the counter: */
loop++;

}

/* All file names have now been printed! */
}

/* Print template 2, the filter switch. Since this is a switch */
/* argument it can either be on or off. If the user has entered */
/* the argument "Filter" or the abbreviation "F" the second */
/* field in the "arg_array" will contain a non-zero number, */
/* else (the user has not entered the argument "Filter" or "F") */
/* the second field in the "arg_array" is set to zero. */

/* Was the argument "Filter" or "F" set? */
if(arg_array[FILTER_TEMPLATE])

printf("The sound filter was turned on!\n");
else

printf("No sound filter will be used!\n");

/* Before our program terminates we have to free the RDArgs */
/* structure which was automatically allocated for us: */
FreeArgs(my_rdargs);

/* Please note that the arguments that was collected by the */
/* ReadArgs() function will also be removed when you call */
/* FreeArgs. Any pointers in the "result_templates" array */
/* which pointed to some data, for example strings, may */
/* therefore not be used any more after you have called */
/* FreeArgs(). The data (strings) will have been */
/* deallocated. */

/* "And they lived happily ever after..." */
exit(0);

Sourcecode: Example2.c 6 / 6

}

	Sourcecode: Example2.c
	Example2.c

